Uncertainity Adapatation in Robot Perception
and Learning

Jimmy Jin

December 2017

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Kris Kitani, Co-Chair
Siddhartha Srinivasa, Co-Chair

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright (© 2107 Jimmy Jin

Keywords: Robotics, Computer Vision, Reinforcement Learning

I would like to dedicate this thesis to my loving parents Dejiang Jin and Xiaoying Zhu.

November 30, 2017
DRAFT

v

Abstract

Dealing with uncertainty is a fundamental challenge for building any practical
robot platform. In fact, the ability to adapt and react to uncertain scenarios is an
essential sign of an intelligent agent. Furthermore, uncertainty can arise from ev-
ery component of a robotic system. Inaccurate motion models, sensory noises, and
even human factors are all common sources of the unexpected. From an algorith-
mic perspective, handling uncertainty in robotics introduces a new layer of difficulty
because the algorithm not only needs to be accurate in a single scenario but also
need to adapt to the changes in uncertainties as the environment shifts. This thesis
presents methods for adapting to uncertainties in two tasks: object pose estimation
and assistive navigation.

For object pose estimation, we present a sensor fusion method that is highly
robust in estimating the pose of fiducial tags. The method leverages the different
structural and sensory advantages of RGB and Depth sensors to joint-optimize the
Perspective-N-Point problem and obtains the pose. The key insight being adaptively
bounding the optimization region by testing the pose solution uncertainty.

For assistive navigation, we wish to tackle the problem of using active signaling
to avoid pedestrians while it is minimally invasive to other people. We formulate the
problem as a bandit with expert advice problem with reinforcement learning poli-
cies as the experts. We present an online learning algorithm which can continuously
adapt to new and uncertain pedestrian types by using an online policy search tech-
nique and the Dirichlet Process.

November 30, 2017
DRAFT

vi

Acknowledgments

First and foremost, I would like to thank my advisors Kris Kitani and Siddhartha
Srinivasa. You are fantastic mentors, teachers, and sources of inspiration. I cannot
express my gratitude enough for giving me the oppertunities to learn from the best
over my years at CMU. From being a sophomore four years ago to today, I would
not have gained the insights and passions for robotics that I have without these val-
ueable oppertunities and your gauidance every step of the way. Thank you for being
understanding and always pushing me to be a more independent thinker.

November 30, 2017
DRAFT

viii

Contents

(L__Introduction|

(1.1 Object Pose Estimation|
(1.2 Blind Navigation|

2 Pose Estimation Background]

2.1 Pose Ambiguity|

[3 Robust Fiducial Tag via Sensor Fusion|

[3.1 Approach|
(3.1.1 Depth Plane Fitting|

1 Pose Refinement| oL
[3.2 Experimental Results| o oo
[3.2.1 ViewmngAngle|

[3.2.3 Lighting|. e

[3.2.4 Benchmark Against ar_track alvar|

[3.2.5 Computation Time| L

[Pedestrain Manipulation Background|

[FAdaptive EXP4
6__Conclusion|

ix

10
11
13
13
14
15
17
17
17

19

21

23

November 30, 2017
DRAFT

List of Figures

(.1 Robotuncertainity|

(1.2 Robot about to execute a manipulation task and rearrange the objects on the table.

| Apriltags are used to find the poses of targeted objects 1n the scene but the robot

| ultimately fails to gasp the rectangular prism because the orientation of 1ts pose

| IS WIONZ. © o v v v vt e

[2.1 Different types of popular fiducial tags. ARToolkit, ARTags, and AprilTags are

[square tags with black borders. RUNE-tags and Intersense use different circle

f I landmarks|

[2.2 'The ambiguity effect can be demonstrated with two rendered cubes in the per-

spective view. The two cubes are rotated such that two faces are interlaced. The

red square 1n[2.2al1s a simulated projection of a square tag. The red circular re-

gions denote the region of potential corner detection 1n a noisy scene. [2.2bl1s a

sketch of the potential resulting 2D projection. The pose can converge to either

[3.1 The pose of the Apriltag visualized in RViz computed using the original library

[3.2 An abstract visualization of the optimization constraints. The blue curve 1s the

| nitial pose estimation obtained from the depth plane. The red curves are the am-

| biguous poses from the RGB 1mage. We constrained the region of optimization

[based on how well we fit the depthplane.|

[3.3 An example of the experimental setup in|3.3al Groundtruth 1s computed from

[a large chessboard where the relative transformation to the tag 1s known. Each

| data collection, shown 1n |3.3b] 1s ran through 1000 trials and pose errors are

| measured. Since a 7 cm tag only occupies 15 pixels, the system has a signficant

[3.4 Viewing Angle vs Error Percentage (0.1 = 10%) under different simulated noise

| level. The new RGBD based algorithm can resist noise in the RGB 1mage and 1t

| vastly outperforms the original algorithm.|

[3.5 Distance vs Error Percentage (0.1 = 10%). Data are captured at a 10 cm incre-

X1

[3.6 Apriltags captured by Kinect V2 under different levels of illumination. The RGB

sensor dynamically adjust the exposure time to compensate for low lighting. In

[3.6a, the image 1s captured outside of Kinect’s adjustable range and the pixels

are underexposed. In|3.6b, the long exposure time introduced noticeable noise

tothetmage. |

[3.7 Average pose errors compared with ar_track_alvar package.|

Xii

List of Tables

Xiil

November 30, 2017
DRAFT

Xiv

Chapter 1

Introduction

Uncertainity is a fundemental problem for any robots that intend to perform intellgently in the
real world. At its core, uncertainity captures the essence of our ever-changing world and its un-
derlying latent states. In practice, uncertainity arises from almost every part of the robotic system
such as noisy sensors, poor localization, and even inputs from surrounding human users. Many
of these challgnes have been well studied in different areas of robotics including manipulation,
mobile robots, aerial robots, and human-robot interactions.

From an algorithmitic point of view, the challenge of designing algorithms dealing with un-
certainity is that we cannot make strong assumptions about the uniformity of its inputs. With the
case of classical deterministic algorithm, there is a deterministic mapping from inputs to correct
outputs. The mapping can be arbitrarly complicated or difficult to compute but it remains static
over time. In other words, all the necessary information are provided as inputs to the algorithm.
The accuracy of the algorithm can be objectively measured by verifying against the groundtruth.
However, we have to relax this assumption for the inputs under uncertainity. In facts uncertain
inputs can have multiple correct answers based on some latent state of the world which can’t
be captured as part of the input. Furthermore, uncertain inputs are everywhere in robotics. For
instances, consectuive images taken from the same camera in a static scene are often not the
same due to randomness in lighting variations and the amount of photons captured by each pixel

Figure 1.1: Robot uncertainity

Figure 1.2: Robot about to execute a manipulation task and rearrange the objects on the table.
Apriltags are used to find the poses of targeted objects in the scene but the robot ultimately fails
to gasp the rectangular prism because the orientation of its pose is wrong.

during the camera exposure. The same person might react differently to the same set of actions
depending on his or her mood. Therefore, uncertain inputs are often thought of as samples from a
probabilistic distribution and the quality of the algorithm is measured by repeating the algorithms
over many trials.

We will address two specific task common in robotic applications and show that by leverg-
ing the idea of adpative weighting, we can imporve the performance of these tasks even under
uncertainity.

1.1 Object Pose Estimation

The first task we will address is robust pose estimation for table top objects. This has been
a diffcult problem due to the size of the objects and precision requirements in large robotic
systems such as HERB as shown in Fig[I.2] In particular we will use fiducial markers. Detection
and identification using artificial landmarks, known as fiducial markers, has long been used in
augmented reality (AR) and computer vision (CV) applications. Over the last decade, there
have been numerous marker systems, such as ARTags [?] Apriltags [?], and Rune Tags [?
], designed to improve detection encoding precision. In contrast to AR systems, robots often
operate in suboptimal conditions where, for instance, camera resolution and illumination are
constrained and cause the data to be noisy. In order for fiducial-marker systems to be effective in
these settings, they must be robustness to scenery and sensory noises.

There are two qualities of fiducial-marker systems that are especially important to robotic

2

applications: detection rate, the ability to find the tag in the image, and pose accuracy, the ac-
curacy of the estimated 6 DOF pose of the tag. Compared to markerless detection algorithms,
fiducial-marker methods are simpler. They yield great results in augmented reality tasks that re-
quire high detection speed. Furthermore, the fiducial tags are popular in the robotic community
due to their high detection rates and numerous encoding schemes. For example, Apriltags are
commonly used to test SLAM systems, or finding ground truth for objects in manipulation and
motion planning tasks.

However, obtaining highly accurate pose estimations using fiducial tags from noisy data re-
mains a challenge. This is important for robotic applications because small errors can cause large
system failures as the errors propagate and amplify through the system as shown in Figure [I.2]
Currently, the fiducial tag systems yield promising results under well conditioned or rendered en-
vironments, but this does not translate to ill-conditioned settings. For instance, when AprilTags,
a state of the art fiducial marker, are used with low resolution cameras or harsh lighting condi-
tions, the system often produces poses with tremendous rotational errors. We observe that the
AprilTag’s localization accuracy performs significantly worse when there is noise in the captured
image. This is a difficult problem because RGB sensors are often sensitive to lighting, and most
popular fiducial systems are not designed to take advantage of other sensors commonly available
on robots.

1.2 Blind Navigation

The second task we will address involves learning navigation strategies for the blind assistive
robot Cabot. Recently, much work has been done in observing human intent in the area of
assistive robotics. This is an interesting field of study because these systems are generally passive
- robots are often designed to observe other human behaviors and adjust its actions according
to its predictions for better avoidance. In this paper, we instead present a way for robots to
actively change other people’s course of actions appropriately in order to help the user better.
Specifically, we want to come up with a way to actively manipulate the trajectories of pedestrians
so that pedestrians do not unintentionally run into mobile robots that operate near people from
inattentiveness.

The motivation behind developing such a strategy is clear for robots that interact extensively
with humans. In our case, we have a robot designed to navigate the visually impaired in open ar-
eas like hotels, malls or airports. This robot must have a strategy to avoid colliding with pedestri-
ans for both its safety and its user’s safety. However, avoiding collisions is sometimes impossible
when moving around tight spaces or in crowded environments without actively changing pedes-
trian behavior. A viable solution for this robot can be to play a sound. While the playing this
sound continuously would guarantee no collisions, this method is invasive to the environment
and energy inefficient. Instead, we want to learn a way to play the sound only when absolutely
necessary, that will hopefully be robust enough to take into account the wide variety of possible
pedestrian behaviors.

We can represent this robot as a robotic guide dog. Our objective is for the robotic guide dog
to learn when it is appropriate to bark. Similarly, police officers inherently use a learned heuristic
when deciding whether to simply flash their police cars’ emergency lights, or to sound its sirens.

Police cars can’t always use its sirens since sirens are too loud and will disrupt the public, but
sometimes it is necessary when chasing a dangerous suspect. We want to formally develop a way
for robots to learn ways to avoid pedestrians, just like how police officers learn to use their car’s
sirens strategically.

We view this problem from a reinforcement learning perspective, where we want to learn
the sequential decision making actions that maximize our goal reward. Furthermore, this is
also an online learning problem for we want to continuously adapt and improve our pedestrian
manipulation strategies over time and unseen environment types. Again, since pedestrians are all
different in the way they interact with other pedestrians, we want to come up with a strategy that
is robust to variations in human behavior. This is especially suitable for assistive technologies
because their targeted tasks are often changing and involving over the life time of the user.

Chapter 2

Pose Estimation Background

Obtaining highly accurate pose estimation has been an important research area in robotics. Nu-
merous algorithms rely only on RGB or gray scale images. Solving the projection geometry
of some detected features and then minimize the reprojection error of the features in the image
space [?]. Similarly, methods such as Iterative Closest Point [?] were developed to solve
the pose estimation problem using range data by minimizing the Euclidean distance between
the model and the depth data. Recently, some approaches in the SLAM community propose
to enhance the accuracy of traditional tracking algorithms by fusing RGB with depth data or
inertial data in various problems using extended Kalman filters [? ?]. Compared to the single-
sensor approaches, algorithms utilizing RGBD data are more accurate and perform well in noisy
situations where other approaches fail. However, such approaches are often costly in terms of
physical hardware as well as computation overhead. It is difficult to apply them in time sensitive
applications.

Fiducial markers solve pose estimation by exploiting easily detectable features in the RGB
space. There is an abundance of unique tag designs, most of them carry easily recognizable yet
precise binary patterns in the inner region to encode information. There are two types of common
tags: circular tags and square tags (see Figure [2.1)).

Circular tags are created to encode the payload using small circular patterns arranged in
various shapes. Examples of circular tags include Intersense [?] and Rune tags [?]. The
perspective transformation of a circle is an ellipse, which can be used to directly compute the pose

O ®

(a) AR- (b) ARTag (c) AprilTag (d) RUNE- (e) Inter-
Toolkit Tag sense

Figure 2.1: Different types of popular fiducial tags. ARToolkit, ARTags, and AprilTags are
square tags with black borders. RUNE-tags and Intersense use different circle features as land-
marks

(b)

Figure 2.2: The ambiguity effect can be demonstrated with two rendered cubes in the perspective
view. The two cubes are rotated such that two faces are interlaced. The red square in[2.2a]is a
simulated projection of a square tag. The red circular regions denote the region of potential
corner detection in a noisy scene. [2.2b|is a sketch of the potential resulting 2D projection. The
pose can converge to either one of the two faces.

using back projection methods. Localization of circular features is generally more accurate, and
thus generates better pose estimation at the cost of higher computation time [?]. However, small
circular features become hard to detect when they are far away from the camera or prospectively
rotated, and thus their effective range is much smaller than that of square tags.

ARTags [? |, ARToolkit [?], ArUco [?], AprilTag [?] and AprilTag 2 [?] are examples
of squared-based fiducial tags. The perspective projection of a square becomes a general quadri-
lateral. Given the scale of a single marker, the full 6-DOF pose can then be estimated using the
corners of the quadrilateral. However, since the tags are detected using rectangles and lines, the
accuracy of their corner point sub-pixel locations is limited. Among the square tags, ARToolkit
is one of the earliest detection systems, and it is mainly used for Augmented reality applications.
Built on top of ARToolkit, ARTags and Apriltag reduced the computation time by using a 2D
binary pattern as the payload. Both systems use the image gradient to compute the tag border
making it robust to lighting changes and partial occlusions. Relative to ARTags, Apriltags have
a lower false positive rate, as they use a lexicode-based system that is invariant to rotation. In
addition, Apriltags have higher detection rates at further distances and at more difficult viewing
angles. Recently AprilTag 2 improved upon the original Apriltag. It implements a new boundary
segmentation algorithm which further reduces the computing time for detection and increases
the detection rate. Compared to circular tags, the advantages of square tags are that they can be
located very efficiently and they have reliable decoding schemes. Therefore, lts they are more
suitable for robotic applications that require a robust system.

2.1 Pose Ambiguity

In square fiducial marker detection, the pose is computed using the four corners of the tag. Since
the tags are planar, it is easy to compute perspective point correspondences from the corners.

6

This can be formalized as a specific case of pose estimation from Perspective-N-Point and it has
been well studied in geometry-based Computer Vision literatures [? ?]. There are numerous op-
timization methods such as the ones proposed in [?] and [?] to solve this problem. In particular,
Horaud et al. [?] show that there is a deterministic analytical solution to the Perspective-4-Point
(P4P) problem when the points are coplanar as they are on the tag. In practice, however, these
methods are very sensitive to noise in the scene. When ARTags, Apriltags and ARToolkit sys-
tems are used in scenarios shown in Figure the poses of the tags are unstable even when the
scene is static. Since the minimal number of perspective points are used to estimate the pose, a
small variance in the corner detection process will yield estimations far from the true pose.

We will illustrate an ambiguity effect caused by noise by using two overlapping cubes, shown
in Figure The overlapping face of the two cubes are interlaced but rotated by 120 degrees.
However, due to perspective projection, the squares appear to be on the same plane. With low
camera resolution, the overlapping squares become virtually indistinguishable. The red circular
regions are the detected corners under some sensory noise. Even though the reprojection error is
minimized in the 2D space using P4P optimization methods, the 3D pose can still be far off. The
result of the optimization can be characterized as a bimodal distribution and a function of the the
viewing angle and distance. Depending on the noise level in the scene, the optimization might
converge to either one of the local minima causing the pose estimation to be unreliable.

November 30, 2017
DRAFT

Chapter 3

Robust Fiducial Tag via Sensor Fusion

3.1 Approach

This section describes a method for accurately estimating poses for square fiducial tags in noisy
settings by fusing RGBD data. The process of detecting and decoding the tag is identical to
previous fiducial tag systems. After the tag corners are detected, they are treated as approximated
locations of the true corners. Using the corners, the method implicitly evaluates the depth data
and RGB data as two separate observations and fuse them to minimize the error in 2D and 3D
space.

There are three distinct components to this method. First, we find the plane in SO(3) con-
taining the tag using depth data and detected corners. Secondly, an approximate initial pose is
computed using the depth plane. Finally, the method refines the initial pose using the RGB data
by minimizing the reprojection error within a constrained space. Each component is described
in detail in the following subsections.

3.1.1 Depth Plane Fitting

The first step is to extract the plane which the tag is laying on. We assume that the RGBD sensor
is calibrated such that depth and RGB streams are registered to the same frame. The rectangular
patch of points in the depth image bounded by the approximated corner pixels y = [y1, y2, Y3, Ya)
contains the range information of all the points on the tag. Here we take advantage of the planar
characteristic of the tag. By fitting a plane over the range data, we can constrain the pose of the
tag to be on the plane.

The raw range data retrieved from the depth sensors are generally noisy. The borders and
dark regions of the tag produce unreliable range data and artifacts due to a weakness of our depth
sensor (time of flight sensor from Kinect V2). Therefore, we first filter the data by removing
points too far from the median before fitting the plane. Nevertheless, the remaining points could
have a large variance depending on the lighting condition and the magnitude of the in-plane
rotation. The accuracy of the plane fit and initial pose estimation is directly affected by the noise
level of data. We will characterize the uncertainty of the plane fit and adjust the weight of the
depth pose estimation accordingly during the fusing stage.

9

In implementation, we used a Bayesian plane fitting algorithm described in [?] which com-
putes the Hessian Normal parameters 72, d] of a plane for noisy range data through optimizing

where 7 is the local normal to the planar surface of the depth point and m; is the measurement
direction for the sensor for point p;. The algorithm in the paper assumes a radial Gaussian noise
in the range data p; with the standard deviation modeled by a function in the form

kd?
7= g
The coefficient £ > 0 is an estimated value obtained from sensor calibration. In our implemen-
tation, we obtained k by using the Kinect V2 model obtained from [?].

An important result we used from [?] is the covariance matrix for the plane-parameters.
The covariance is obtained by taking the Moore-Penrose generalized inverse of Hessian matrix
computed from the Lagrangian. It characterizes the uncertainty of the plane fit and implicitly
measures the relative accuracy of the depth data.

3.1.2 Initial Pose Estimation

The 6 DOF pose of the tag can be described as the transformation R, t] aligning the tag frame’s
coordinate system and the sensory frame’s coordinate system of the robot. The depth plane
Din, d] alone is insufficient to determine the transformation as it only defines 3 DOF. Since the
depth plane was computed based on the approximate center of the tag, we can use the center of
the tag and center of the plane as a pair point correspondence. However, there are still infinite
number of valid poses rotating about the normal 7. One solution is to constrain the pose by
using a corner as an extra point correspondence to solve for the optimal rotation. In practice, the
accuracy of this method largely depends on the depth accuracy of the chosen corner point.

An alternative is to use all 4 detected corners as 4 pairs of point correspondences for the opti-
mization. We projected the detected corners onto D|71, d] to get the coordinates p = [p1, P2, 3, P4
in the robot sensory frame. The corner coordinates ¢ = [q1, g2, g3, q4] in the tag frame can be
easily calculated since the tag is a square plane. We define the center of the tag as the origin,
and the coordinates are simply the location of the corners on a Cartesian plane. Given these two
sets of 3D point correspondences, the pose can be computed as a rigid body transformation es-
timation. Solving for the optimal transformation |R, t] requires minimizing a least squares error
objective function given by:

[R,t] = argminR € SO(3),t € R? Zwi\qu +t — pi|]?

i=1

There are numerous approaches to solve Eq. ?? described in [?]. Since we have very few

10

November 30, 2017
DRAFT

(a) RGB N (b) RGBD

Figure 3.1: The pose of the Apriltag visualized in RViz computed using the original library VS
our RGBD fused method.

correspondences and they are assumed to be correct, it can be computed efficiently using SVD:

i
Il
==
3

pci:pi_ﬁ
=1
1 N
Q_ZN;%' Gei = G — q
plg.=UXVT
R=VUT
t=q— Rp

Here, R and t are the corresponding rotation and translation components of the the transforma-
tion. The above approach minimizes the least square error of the transformation and it is robust
to small errors in the correspondences. The resulting pose obtained from the range data, although
not accurate, provides a good approximation for the true pose.

3.1.3 Pose Refinement

Lastly, the pose is refined by minimizing the reprojection error in Eq.?? using the initial pose
estimated from the previous step. The camera is assumed to be calibrated and the camera pro-
jection model K is known. Here, R* and t* are the optimal pose in the constrained optimization

11

Depth Sensor
RGB Sensor

True Pose

Figure 3.2: An abstract visualization of the optimization constraints. The blue curve is the initial
pose estimation obtained from the depth plane. The red curves are the ambiguous poses from
the RGB image. We constrained the region of optimization based on how well we fit the depth
plane.

function
(R, t*] = argming- ¢ Y |(K[R[t*])p; — ys])”
R = R(AR)
t* = t+ R(At)
subject to:
AR < FR, At < I

Intuitively, the optimal pose is the one with minimal reprojection error in the RGB space and
aligned with the plane in the depth space. Therefore, the goal of the optimization is to find
the local minimum closest to the initial estimation within allowable region I as illustrated with
Figure 3.2] The key challenge is to determine the constrained region I'r and T'; such that it
include a locally optimal pose and exclude the ambiguous pose. In most cases where the depth
plane yields a good fit, this region should be small because the optimal pose is close to the
initial estimate. When the depth sensor is noisy, the I increases since the initial estimate might
be far off. Thus, the constrained region I' is defined by the uncertainty in the initial estimate
and it is characterized by the covariance of the plane parameters. In implementation, we used
a trust-region optimization algorithm to bound the constraints. The scaling parameters for the
covariance is empirically tested to obtain the best results for our robot.

The strength of this method is that it harness the benefits of RGB and depth information
without explicitly assuming their relative accuracy. One advantage of RGBD sensors is that the
camera and the depth sensor often work optimally with different constraints. In the example of
Kinect, the RGB camera is sensitive to lighting and works poorly in scenes with low illumination.
However, the time of flight depth sensor is unaffected by such a problem. On the hand, the time of
flight sensor yields poor range results on surface edges, but the RGB camera works exceptionally
well with edges where there is a high color contrast.

12

3.2 Experimental Results

RGB Error
0.14 i !
0.12
0.10
0.08
0.06

0.04 it . .
0.02 R L . :
0.00 ; ; ; ; ;

RGBD Error

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
[}

Frequnecy

20 40 60 80 100 120 140 160 180
Rotation Error

(a) RGB image at 60° (b) Rotation errors across 1000 trials

Figure 3.3: An example of the experimental setup in Groundtruth is computed from a large
chessboard where the relative transformation to the tag is known. Each data collection, shown in
[3.3b] is ran through 1000 trials and pose errors are measured. Since a 7 cm tag only occupies 15
pixels, the system has a signficant failure rate even at 65 cm.

The key problem we are trying to resolve is the localization accuracy of Apriltags in noisy
situations. Therefore, we want to test the resilience of our algorithm and show that it can obtain
reasonable pose estimations under high level of noise. Figure [3.1] demonstrates an example
visualization of the result. We also compare our method against ar_track_alvar, a popular ARTag
detection package that incorporated depth information. Finally, we briefly tested the runtime of
the algorithm to show that it remains capable of real time detection.

In our experiments, we measured the rotational and translation accuracy of the detection
algorithms with respect to three different independent variables: viewing angles, distances, and
lighting conditions. We placed a standard camera calibration chessboard and a 7 cm Apriltag
on a solid planar board. The Apriltag has a fixed distance from the chessboard. This is used to
compute the ground-truth pose for the tag. By using a large chessboard, we can detect the corners
to a sub-pixel accuracy and compute accurate ground-truth poses unsusceptible to lighting and
Sensory noises.

Since our algorithm aims to solve the pose ambiguity problem, we evaluated all the results
based on an adaptive threshold separating the bimodal distribution. This is a reasonable evalua-
tion criteria because easily detectable ambiguous poses are often close to the true pose, making
the average of absolute errors small even though the poses might be wrong most of the time.

3.2.1 Viewing Angle

Due to the perspective ambiguity effect, the localization accuracy of the Apriltags is heavily
affected by the viewing angle of the tag. To characterize the effect, we placed the testing board
with a tag in front of the robot as shown in[3.3a] The testing board is 0.65 meters away from the

13

0.6 Viewing Angle Errors

RGB
RGBD

0.5}

Error Percentage
o© °
w IS

o
N

0.1

0.0
0

10 20 30 20 50 60

Rotation Angle (degrees)
Figure 3.4: Viewing Angle vs Error Percentage (0.1 = 10%) under different simulated noise
level. The new RGBD based algorithm can resist noise in the RGB image and it vastly outper-
forms the original algorithm.

sensor and rotated it at a increment of 5 degrees from 0 degrees to 60. The angles are measured
from the axis parallel to the sensor. This is about the range which the tag can be detected reliably
given the camera resolution and the distance. At each angle, we captured the RGB image, depth
image, and detection outputs from the Apriltag library.

For each captured data bundle, we introduced 3 levels of Gaussian noise of 0 = 0.2, 0 = 0.5,
o = 1 to the RGB image and computed the resulting tag pose. This is repeated for 1000 trails
for each data bundle per noise level and the errors are computed for each trial.

The empirical result in Figure [3.3b] show a very clear bimodal distribution, as we expected,
for the detected poses for a given data bundle over 1000 trials. In Figure[3.4] we threshold all the
poses based on their rotational errors and plotted the percentage of unacceptable poses at each
viewing angle. The proposed RGBD fused algorithm vastly outperforms the original algorithm
as it has better localization accuracy at all viewing angles and noise levels.

3.2.2 Distance

The relationship between the distance and localization accuracy is much more apparent. As
the tag moves further away from the sensor, the number of pixels on the tag decreases. The
perspective ambiguity effect becomes more apparent when there is only a small patch of pixels
on the tag. We show the results of both RGB and RGBD methods in Figure [3.5] During the
experiment, it is difficult to keep the viewing angle precisely consistent at each trail. Therefore,
the pose error percentage using RGB is not increasing smoothly as they are in the simulation
results.

We see a clear increase in error percentage in the proposed method when the tag is far away
from the camera. This is contributed both by a smaller tag patch size in the depth image and an
increase in noise with the Kinect sensor at a further distance. In these cases, the variance of the

14

0.7 Distance Errors

RGB
RGBD

0.6

o e ©
W IS 0
. \ :

Error Percentage

o
N
:

00 L L L I
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Distance (m)

Figure 3.5: Distance vs Error Percentage (0.1 = 10%). Data are captured at a 10 cm increment
from 65 cm to 185 cm.

depth plane estimation becomes very wide and the algorithm is unable to converge to the correct
pose. Nevertheless, our method shows a significant gain in accuracy at every distance.

3.2.3 Lighting

From our past observations, poor lighting condition is the most significant contributing factor to
noise and it results in low localization accuracy. The Kinect V2 sensor used in our experiments
dynamically adjust the exposure time under low lighting conditions. When pictures are taken
below or near the adjustable range of the sensor, they contain very noticeable noise as shown in
Figure 3.6

We also tested the algorithm under harsh lighting conditions in a real world setting. The
data were captured under 4 different lighting conditions: 20 lux (dark), 43 lux (dim), and 90 lux
(normal), 243 lux (bright). We recorded a static scene over 5 seconds and randomly sampled
100 frames to run the test. In Figure ??, we demonstrate the particular result collected where the
board is 0.65 m away and angled at 40 degrees. Other data captures reflect similar results. The
localization accuracy significantly improves with better illumination. At the lowest illumination,
nearly 25% of the poses were unacceptable. By using depth sensor which is unaffected by poor
source radiance, there are only 3% of unacceptable poses.

15

Il 165 (] &)

(a) Dark (b) Dim (c) Normal (d) Bright

Rotation Error w.r.t. to Lighting

0.25
RGB
RGBD
0.20F
(0]
2015}
[
(0]
bt
(O]
[a W
S 0.10}
|
0.05F
0.00
2 lux 43 ux 90 lux 243 lux

Figure 3.6: Apriltags captured by Kinect V2 under different levels of illumination. The RGB
sensor dynamically adjust the exposure time to compensate for low lighting. In [3.6a] the image
is captured outside of Kinect’s adjustable range and the pixels are underexposed. In [3.6b] the
long exposure time introduced noticeable noise to the image.

16

Average Rotation Errors Average Translation Errors

Proposed Proposed
a a

Rotation Error (degrees)
Translation Error (cm)
w

(a) Rotation Error (b) Translation Error

Figure 3.7: Average pose errors compared with ar_track_alvar package.

3.2.4 Benchmark Against ar_track alvar

ar_track_alvar is a ROS wrapper package for Alvar [?], an open source AR tag tracking library.
The package is capable of pose estimation for robots similar to Apriltags. In particular, it imple-
ments a module where depth sensor is integrated to improve the pose estimation. The package
uses the detected corner points to extract a patch of point clouds containing the tag then compute
its centroid. The pose is then computed by aligning the centroid with the center of the tag.

We implemented a similar module for the Apriltag and compared the pose accuracy between
our proposed method and the module using all the collected data. The results are shown in Figure
The two algorithms performed similarly in rotation error, but the proposed method was on
average 2 cm better with the position component. The spread of error is also much smaller for
the position component indicating that our proposed method is more consistent.

3.2.5 Computation Time

With our current implementation in Python, the additional computation time for the sensor fusing
process is 11 ms. Therefore the entire detection pipeline can process a 960 x 540 image within
35 ms. All tag detectors and the fusing process were running in a single-threaded mode of an
Intel core. Since our sensory updates at roughly 35H z, the entire pipeline can process the tags
and estimate the pose in near real time.

3.2.6 Discussion
TBD

17

November 30, 2017
DRAFT

18

Chapter 4

Pedestrain Manipulation Background

Pedestrian Intent Prediction To manipulate the trajectories of pedestrians, we must know how
the predict the original trajectories of these pedestrians. Activity forecasting has been studied
using semantic scene understanding combined with optimal control theory [?]. Inverse rein-
forcement learning has proven useful in predicting the trajectories of pedestrians as well [?].
Similarly, active learning approaches to learn pedestrian reward functions and human internal
state has proven successful [? ?]. Building on this work the concept of social LSTMs has
been developed, designed to model pedestrian behavior [?]. More recently, concepts from game
theory has been used to predict human interactions [?].

Human-Robot Interaction The relationship between pedestrians and robots has been studied
previously. Studies that explore the relationship between the motion characteristics of a robot
and its perceived affect on people is well researched [?]. However, in our research we study the
motion characteristics of pedestrians and how our robot’s actions can change them.

Blind Assistance Robots like our robot for navigating the blind through pedestrian environments
is not new. Somewhat similar is NavCog, an application designed to guide the visually impaired
through open spaces using Bluetooth Low Energy beacons [?]. NavCog, however, does not
make an effort to help its user navigate through crowded areas.

Contextual Bandits and Online Learning Since pedestrian distributions can rapidly change as
an agent moves through a changing environment, work for bandit algorithms under adversarial
settings is relevant. The primary bandit algorithm for this case is EXP4, a no-regret algorithm
proven to perform well under adversarial circumstances [?]. Various follow-up algorithms that
improve EXP4 have been developed that work improve the regret bounds for EXP4 [? 2 2 ?].
In our case, we want to modify EXP4 to actively generate new expert policies.

Dirichlet Process The Dirichlet Process has been a proven way to compute nonparametric clus-
tering in a wide variety of scenarios. For example, the Dirichlet Process was utilized successfully
to learn ego-action categories for first-person sports videos [CITE3], or to learn spatial activation
patterns in fMRI data [CITE4]. More interestingly, Gaussian mixture models with the Expecta-
tion Maximization have been used to guide the exploration of finding multi-optima policy solu-

19

tions, instead of developing algorithms to find a single policy solution [CITE1]. Related to this
is to find a variable number of policies using a Bayesian non-parametric approach using infinite
Gaussian mixture models [CITE2].

Policy Gradients Because value-based reinforcement learning methods are less scalable to high
dimesionality environments and greedy policy updates may be unstable, we use policy search
methods for computing optimal policies for our robot. Specifically, we desire to use model-free
policy search methods using policy gradients. Likelihood policy gradients are traditionally used
as policy search methods [? ?], but more recently natural policy gradients have been used
successfully [?]. Other algorithms like Expectation Maximization have been adapted to perform
model-free policy search as well [?].

To conduct theoretical experiments before moving to the physical robot, we have constructed
a simulation based on the popular PedSim package [] as shown in ??. In the original PedSim
package, the pedestrians are simulated as particles and their movements are computed based on
a social force dynamics model. In order to make the simulation more suitable for our problem
setup, we modified the pedestrian class and introduced a new robot agent class for controlling
our reinforcement learning agent. In particular, we added a new set of attributes and an aware-
ness factor to the pedestrian class. The awareness level is generated stochastically based on the
attributes. A high level of awareness makes the pedestrian more likely to move away from the
robot agent as it get closer. On the other hand, a low level of awareness makes the pedestrian
much more likely to collide with other pedestrians and the robot. The robot agent is a special
agent which has no awareness attribute but it is able to toggle on a force field represented by a
circular obstacle. The force field can be viewed as a simplified representation of playing a sound
which alert the surrounding pedestrians to walk around.

20

Chapter 5
Adaptive EXP4

21

November 30, 2017
DRAFT

22

Chapter 6

Conclusion

23

November 30, 2017
DRAFT

24

	1 Introduction
	1.1 Object Pose Estimation
	1.2 Blind Navigation

	2 Pose Estimation Background
	2.1 Pose Ambiguity

	3 Robust Fiducial Tag via Sensor Fusion
	3.1 Approach
	3.1.1 Depth Plane Fitting
	3.1.2 Initial Pose Estimation
	3.1.3 Pose Refinement

	3.2 Experimental Results
	3.2.1 Viewing Angle
	3.2.2 Distance
	3.2.3 Lighting
	3.2.4 Benchmark Against ar_track_alvar
	3.2.5 Computation Time
	3.2.6 Discussion

	4 Pedestrain Manipulation Background
	5 Adaptive EXP4
	6 Conclusion

